bbabanner.jpg

Filter by

Fractional derivative modeling of double-diffusive free convection with von Neumann stability analysis

This paper focuses on the problem of fractional time derivative of fluid flow and convective heat and mass transfer from a heated semi-infinite wall immersed. We provided two cases of study, one is free convective heat transfer and the other is a free double-convective heat and mass transfer. The time-derivative terms in the equations of momentum, energy and concentration are assumed to be

Circuit Theory and Applications
Mechanical Design

Design of low-voltage FO-[PD] controller for motion systems

Fractional-order controllers have gained significant research interest in various practical applications due to the additional degrees of freedom offered in their tuning process. The main contribution of this work is the analog implementation, for the first time in the literature, of a fractional-order controller with a transfer function that is not directly constructed from terms of the

Circuit Theory and Applications
Mechanical Design

A Grunwald–Letnikov based Manta ray foraging optimizer for global optimization and image segmentation

This paper presents a modified version of Manta ray foraging optimizer (MRFO) algorithm to deal with global optimization and multilevel image segmentation problems. MRFO is a meta-heuristic technique that simulates the behaviors of manta rays to find the food. MRFO established its ability to find a suitable solution for a variant of optimization problems. However, by analyzing its behaviors during

Artificial Intelligence
Circuit Theory and Applications
Software and Communications

Highlighting a Common Confusion in the Computation of Capacitance of Electrochemical Energy Storage Devices

[No abstract available]

Energy and Water
Circuit Theory and Applications

Possibility of information encoding/decoding using the memory effect in fractional-order capacitive devices

In this study, we show that the discharge voltage pattern of a supercapacitor exhibiting fractional-order behavior from the same initial steady-state voltage into a constant resistor is dependent on the past charging voltage profile. The charging voltage was designed to follow a power-law function, i.e. [Formula: see text], in which [Formula: see text] (charging time duration between zero voltage

Circuit Theory and Applications

Novel Double-Dispersion Models Based on Power-Law Filters

Novel double-dispersion models based on power-law filters are introduced in this work. These models are based on standard first-order and/or second-order low-pass filter transfer functions (denoted as mother functions) and do not require the employment of the fractional-order Laplacian operator. An attractive benefit, from the flexibility point of view, is that the number of parameters, which must

Circuit Theory and Applications

Two-dimensional steady-state analysis of selected wastewater state variables using asm3

Performance of activated sludge wastewater treatment plants are mainly dependent on bacterial growth, which is limited by many factors. These factors include availability of suitable substrate, limiting nutrients, environmental conditions, and energy. In activated sludge model no. 3 (ASM3), constituents in wastewater are divided into two main categories: carbonaceous compounds and nitrogenous

Circuit Theory and Applications

Passive approximations of double-exponent fractional-order impedance functions

Double-exponent fractional-order impedance functions are important for modeling a wide range of biochemical materials and biological tissues. Through appropriate selection of the two exponents (fractional orders), the well-known Havriliak–Negami, Cole–Cole, Cole–Davidson, and Debye relaxation models can be obtained as special cases. Here we show that an integer-order Padé-based approximation of

Circuit Theory and Applications

Power-law compensator design for plants with uncertainties: Experimental verification

A power-law compensator scheme for achieving robust frequency compensation in control systems including plants with an uncertain pole, is introduced in this work. This is achieved through an appropriate selection of the compensator parameters, which guarantee that the Nyquist diagram of the open-loop system compensator-plant crosses a fixed point independent of the plant pole variations. The

Circuit Theory and Applications

Ultra-low-power compact single-transistor all-pass filter with tunable delay capability

A novel first-order voltage-mode all-pass filter is introduced as a true-time delay (TTD) cell with tunable delay capability. The proposed filter consists of a single transistor, a varactor, and four resistors. The operation of the proposed filter is verified by post-layout simulations in 65-nm CMOS technology. The post-layout simulation results of a single stage of the proposed filter demonstrate

Circuit Theory and Applications