banner

Filter by

Deep Learning Based Kinematic Modeling of 3-RRR Parallel Manipulator

This paper presents a novel low cost design for a 3-RRR Planar Parallel Manipulator (PPM). These manipulators proved their superiority over serial manipulators due to their speed, precision and smaller work space where the work space area is accounted for in the design to ensure that the robot is performing its task in a smooth and simple way without getting into any singularity points. The

Artificial Intelligence
Circuit Theory and Applications
Software and Communications
Mechanical Design

Chaotic Dynamics and FPGA Implementation of a Fractional-Order Chaotic System with Time Delay

This article proposes a numerical solution approach and Field Programmable Gate Array implementation of a delayed fractional-order system. The proposed method is amenable to a sufficiently efficient hardware realization. The system's numerical solution and hardware realization have two requirements. First, the delay terms are implemented by employing LookUp Tables to keep the already required

Circuit Theory and Applications

Realistic Wireless Smart-Meter Network Optimization Using Composite RPL Metric

In smart metering applications, transferring and collecting data within delay constraints is crucial. IoT devices are usually resource-constrained and need reliable and energy-efficient routing protocol. Furthermore, meters deployed in lossy networks often lead to packet loss and congestion. In smart grid communication, low latency and low energy consumption are usually the main system targets

Artificial Intelligence
Energy and Water
Circuit Theory and Applications
Software and Communications
Innovation, Entrepreneurship and Competitiveness

Self-Reproducing Hidden Attractors in Fractional-Order Chaotic Systems Using Affine Transformations

This article proposes a unified approach for hidden attractors control in fractional-order chaotic systems. Hidden attractors have small basins of attractions and are very sensitive to initial conditions and parameters. That is, they can be easily drifted from chaotic behavior into another type of dynamics, which is not suitable for encryption applications that require quite wide initial

Circuit Theory and Applications

Design and fabrication of CNT/graphene-based polymer nanocomposite applications in nanosensors

Development and improvement of nanosensors have been active research areas over the last few decades. Many materials and compounds have been investigated for their sensing properties. This work is concerned with developing a new sensing layer for gas sensors based on chitosan as a polymer enhanced with graphene as a nanofiller. The graphene used for preparing the chitosan solution was at 0.1, 0.5

Circuit Theory and Applications
Mechanical Design

Parallel random bitstreams from a single source of entropy based on nonthermal electrochemical microplasma

This study presents the simultaneous generation of two uncorrelated and continuous high-quality random bitstreams originating from a single physical system based on confined, nonthermal electrochemical microplasma operating under atmospheric conditions. The randomness is intrinsically inherited from the time-resolved electrical current and optical emission intensities of the microplasma system

Circuit Theory and Applications
Software and Communications
Agriculture and Crops
Mechanical Design

Generalized Fully Adjustable Structure for Emulating Fractional-Order Capacitors and Inductors of Orders less than Two

A novel scheme suitable for the emulation of fractional-order capacitors and inductors of any order less than 2 is presented in this work. Classically, fractional-order impedances are characterized in the frequency domain by a fractional-order Laplacian of the form s± α with an order 0 < α< 1. The ideal inductor and capacitor correspond, respectively, to setting α= ± 1. In the range 1 < α< 2

Circuit Theory and Applications

Implementation of a fractional-order electronically reconfigurable lung impedance emulator of the human respiratory tree

The fractional-order lung impedance model of the human respiratory tree is implemented in this paper, using Operational Transconductance Amplifiers. The employment of such active element offers electronic adjustment of the impedance characteristics in terms of both elements values and orders. As the MOS transistors in OTAs are biased in the weak inversion region, the power dissipation and the dc

Circuit Theory and Applications

Wideband third-order single-transistor all-pass filter

In this letter, a third-order wideband voltage-mode all-pass filter (APF) is proposed for application as a true time delay (TTD) cell. The advantages of designing a single-stage higher order filter over cascading several lower order stages are illustrated. The proposed APF circuit is based on a single metal-oxide-semiconductor (MOS) transistor and is canonical because it requires one resistor, one

Circuit Theory and Applications

Stochastic analysis for one dimensional photonic crystals

Tolerance variations of the design parameters of the photonic crystals due to fabrication processes have a strong effect on the performance of the photonic crystals and their operating wavelengths. In this work, the uncertainties of the design parameters of one-dimensional photonic crystals (1D-PCs) and their impacts on the PCs optical properties and the operating performance are investigated. The

Circuit Theory and Applications