banner

Filter by

Wideband third-order single-transistor all-pass filter

In this letter, a third-order wideband voltage-mode all-pass filter (APF) is proposed for application as a true time delay (TTD) cell. The advantages of designing a single-stage higher order filter over cascading several lower order stages are illustrated. The proposed APF circuit is based on a single metal-oxide-semiconductor (MOS) transistor and is canonical because it requires one resistor, one

Circuit Theory and Applications

Implementation of a fractional-order electronically reconfigurable lung impedance emulator of the human respiratory tree

The fractional-order lung impedance model of the human respiratory tree is implemented in this paper, using Operational Transconductance Amplifiers. The employment of such active element offers electronic adjustment of the impedance characteristics in terms of both elements values and orders. As the MOS transistors in OTAs are biased in the weak inversion region, the power dissipation and the dc

Circuit Theory and Applications

Ultrasound intra body multi node communication system for bioelectronic medicine

The coming years may see the advent of distributed implantable devices to support bioelectronic medicinal treatments. Communication between implantable components and between deep implants and the outside world can be challenging. Percutaneous wired connectivity is undesirable and both radiofrequency and optical methods are limited by tissue absorption and power safety limits. As such, there is a

Circuit Theory and Applications

Generalized switched synchronization and dependent image encryption using dynamically rotating fractional-order chaotic systems

This paper presents a generalization, attractor control and multi-scroll generation method for fractional-order chaotic systems through rotation transformation. A novel synchronization-dependent colored image encryption and secure communication scheme is also proposed. The systems with dynamic rotation angle fit successfully in a generalized dynamic switched synchronization scheme. Dynamic control

Circuit Theory and Applications

Atmospheric pressure air microplasma current time series for true random bit generation

Generating true random bits of high quality at high data rates is usually viewed as a challenging task. To do so, physical sources of entropy with wide bandwidth are required which are able to provide truly random bits and not pseudorandom bits, as it is the case with deterministic algorithms and chaotic systems. In this work we demonstrate a reliable high-speed true random bit generator (TRBG)

Circuit Theory and Applications
Software and Communications
Mechanical Design

Software and Hardware Implementation Sensitivity of Chaotic Systems and Impact on Encryption Applications

This paper discusses the implementation sensitivity of chaotic systems added to their widely discussed sensitivities to initial conditions and parameter variation. This sensitivity can cause mismatches in some applications, which require an exact duplication of the system, e.g., chaos-based cryptography, synchronization and communication. Specifically, different implementation cases of three

Circuit Theory and Applications

Active circuit model of low-frequency behavior in perovskite solar cells

The low-frequency impedance hook in perovskite solar cells (PSC) is a feature that has been frequently associated with the behavior of passive circuits of inductors or negative capacitances. However, if the experimental impedance data do not transform according to the Kramers-Kronig (KK) relations, the system does not fulfill the conditions of linearity, stability, causality and finiteness

Circuit Theory and Applications

Two-Port Network Analysis of Equal Fractional-order Wireless Power Transfer Circuit

Wireless power transfer (WPT) has been widely employed in many applications. Its advantages have added more safety and ease in various medical, industrial, and electrical applications. This paper investigates the two-port network concept in the analysis of the fractional-Order WPT circuit. A general expression for the WPT efficiency as a function of two-port network parameters is derived. It is

Circuit Theory and Applications

Multiplierless chaotic Pseudo random number generators

This paper presents a multiplierless based FPGA implementation for six different chaotic Pseudo Random Number Generators (PRNGs) that are based on: Chua, modified Lorenz, modified Rössler, Frequency Dependent Negative Resistor (FDNR) oscillator, and other two systems that are modelled using the simple jerk equation. These chosen systems can be employed in high speed applications because they don't

Circuit Theory and Applications
Innovation, Entrepreneurship and Competitiveness

Enhanced FPGA realization of the fractional-order derivative and application to a variable-order chaotic system

The efficiency of the hardware implementations of fractional-order systems heavily relies on the efficiency of realizing the fractional-order derivative operator. In this work, a generic hardware implementation of the fractional-order derivative based on the Grünwald–Letnikov’s approximation is proposed and verified on a field-programmable gate array. The main advantage of this particular

Circuit Theory and Applications