banner

Filter by

Inverse memrsitor emulator active Realizations

The paper aims to propose three different inverse memristor emulators based on serveral active blocks. One of the presented emulator realizes employing second generation current conveyor (CCII) andcanalog voltage multiplier with passive elements. The other two introduced emulators are designed using cureent feedback operational amplifier (CFOA) with two switches or two BJT transistor. One of the

Circuit Theory and Applications
Software and Communications

Design and Implementation of an Optimized Artificial Human Eardrum Model

This paper introduces a fractional-order eardrum Type-II model, which is derived using fractional calculus to reduce the number of elements compared to its integer-order counterpart. The proposed fractional-order model parameters are extracted and compared using five meta-heuristic optimization techniques. The CMOS implementation of the model is performed using the Design Kit of the Austria Mikro

Circuit Theory and Applications

Generic FPGA Design of Spiking Neuron Model

This paper introduces a new representation of the human brain neuron cell response. Implementation of a single cell model of an excitatory and inhibitory neuron. The architecture is based on mimic the real reaction of the neuron cell. Excitatory and inhibitory are implemented in generic form for all neuron's behavior. The design is tested experimentally using FPGA. The designs have been realized

Circuit Theory and Applications

Design and implementation of variable inclined air pillow soft pneumatic actuator suitable for bioimpedance applications

The technological revolution has caused the modernization of human–machine relationship changing our approach in problem solving our society issues and deviated the science of robotic all together. An example for one of the most important pawn in this revolution is soft robotics, the soft robots are robots that are made of deformable materials that provide an alternative approach to rigid robots

Circuit Theory and Applications

J-V characteristics of plasmonic photovoltaics with embedded conical and cylindrical metallic nanoparticles

Plasmonic photovoltaics (PVs) are promising structures that improve thin-film photovoltaics performance, where optical absorption is improved via embedding metallic nanoparticles in the PV's active layer to trap the incident optical wave into the photovoltaic cell. The presented work investigates the design of PV with both structures of conical and cylindrical metallic nanoparticles through

Healthcare
Energy and Water
Circuit Theory and Applications

Realization of Cole–Davidson function-based impedance models: Application on plant tissues

The Cole–Davidson function is an efficient tool for describing the tissue behavior, but the conventional methods of approximation are not applicable due the form of this function. In order to overcome this problem, a novel scheme for approximating the Cole–Davidson function, based on the utilization of a curve fitting procedure offered by the MATLAB software, is introduced in this work. The

Circuit Theory and Applications

On chip 0.5 V 2 GHz four-output quadrature-phase oscillator

In this paper, we present a quadrature-phase oscillator that can provide four output voltages while operating from a single 0.5 V supply. The oscillator is based on two cross-coupled modified differential pair cells and provides signals with a phase difference of ±180° or ±90° depending on the chosen output nodes. A test chip with an active area of 0.175 mm2 was designed and fabricated in a 65-nm

Circuit Theory and Applications

A novel image encryption system merging fractional-order edge detection and generalized chaotic maps

This paper presents a novel lossless image encryption algorithm based on edge detection and generalized chaotic maps for key generation. Generalized chaotic maps, including the fractional-order, the delayed, and the Double-Humped logistic maps, are used to design the pseudo-random number key generator. The generalization parameters add extra degrees of freedom to the system and increase the

Circuit Theory and Applications

Enhancing CSP using Spot Fresnel Lens and SiC Coating

Concentrated Solar Power (CSP) systems have a good potential as a renewable energy candidate that are based on converting the incident solar thermal energy to an electrical energy. In this paper, CSP using spot Fresnel lens instead of traditional lenses is presented to enhance the efficiency of the system, where Silicon Carbide (SiC) is used as a coating material for the receiver of the system due

Circuit Theory and Applications

Identifying the Parameters of Cole Impedance Model Using Magnitude Only and Complex Impedance Measurements: A Metaheuristic Optimization Approach

Due to the good correlation between the physiological and pathological conditions of fruits and vegetables and their equivalent Cole impedance model parameters, an accurate and reliable technique for their identification is sought by many researchers since the introduction of the model in early 1940s. The nonlinear least squares (NLS) and its variants are examples of the conventional optimization

Circuit Theory and Applications