banner

Filter by

Impact of oustaloup and matsuda approximations on fractional pid controller of pv panel

Due to the non-linear relation between current and voltage of the PV modules, DC/DC power electronic converters are used to adapt this non-linearity. Controllers are used to control the DC/DC converters in order that, they can take actions against changes in irradiance input levels, temperature input levels and load values. In this study, a standalone PV system that feeds a DC load is simulated

Circuit Theory and Applications

Banana ripening and corresponding variations in bio-impedance and glucose levels

This paper studies banana fruit ripping using the Cole-impedance model fitted over the measured bio-impedance data by monitoring the changes in the model parameters during the different ripping stages. A set of twenty bananas are tested for 84 hours, and impedance measurements are done every 12 hours using an SP150 electrochemical station. The changes in model parameters are related to the

Circuit Theory and Applications
Agriculture and Crops

Generic Hardware of Fractional Order Multi-Scrolls Chaotic Generator Based on FPGA

Exploring the implementation of fractional calculus is essential to be adequately used in several applications. This paper introduces an FPGA design methodology of fractional order multi-scrolls chaotic system. Hardware resources comparison proves the efficiency of the proposed method. The designs are simulated using Xilinx ISE 14.7 and realized on FPGA Xilinx Artix 7. Different interesting

Circuit Theory and Applications

Design and application examples of CMOS fractional-order differentiators and integrators

Reduced complexity CMOS fractional-order differentiator and integrator building blocks are introduced in this work, based on 2 nd -order integer-order transfer function approximations. These blocks are then used for implementing fractional-order filters as well as a Leaky-Integrate-and-Fire Mihalas-Niebur neuron model. Cascading 1 st and 2 nd -order blocks to obtain 5 th -order integer-order

Circuit Theory and Applications

Chaotic Flower Pollination and Grey Wolf Algorithms for parameter extraction of bio-impedance models

Precise parameter extraction of the bio-impedance models from the measured data is an important factor to evaluate the physiological changes of plant tissues. Traditional techniques employed in the literature for this problem are not robust which reflects on their accuracy. In this paper, the Flower Pollination Algorithm (FPA), the Grey Wolf Optimizer (GWO) and ten of their chaotic variants are

Circuit Theory and Applications

Realization of fractional-order capacitor based on passive symmetric network

In this paper, a new realization of the fractional capacitor (FC) using passive symmetric networks is proposed. A general analysis of the symmetric network that is independent of the internal impedance composition is introduced. Three different internal impedances are utilized in the network to realize the required response of the FC. These three cases are based on either a series RC circuit

Circuit Theory and Applications

Toward Portable Bio-impedance devices

Bio-impedance measurement has been used as an indicator for specific physical and chemical changes in food products, fruits and vegetables, cancer detection and other applications. In this paper, a portable wireless bio-impedance measurement embedded system, based on the AD5933 chip, is introduced. The system is calibrated using a parallel RC network and the industry standard electrochemical

Circuit Theory and Applications

Speech Encryption on FPGA Using a Chaotic Generator and S-Box Table

In this paper, we proposed a new technique for designing a dynamic S-box depended on the idea of DNA module and Chaotic system to increase its security. Lorenz chaotic generator is utilized as the chaos part of the proposed design. This design is Tested on the Field Programmable Gate Array (FPGA) for the use of offline speech encryption and decryption in real time. The experimental results are

Circuit Theory and Applications

Power tracking controller design for photo-voltaic systems based on particle swarm optimization technique

Solar energy turns into a promising supply of electricity, so structures of Photo-voltaic (PV) regularly use a maximum power point tracking (MPPT) way to deliver the highest probable power to the load continuously. This paper presents the methodology of PI controller tuning of PV employing Particle Swarm Optimization (PSO). The aim is to obtain the maximum power and maintain its value using the PI

Circuit Theory and Applications

Memristor FPGA IP core implementation for analog and digital applications

Exploring the nonlinear dynamics of the memristors is essential to be adequately used in the applications. Realizing memristor on FPGAs as an intellectual property (IP) core offers a flexible platform to realize different models. In the literature, few implementations have been proposed for simple and limited memristor model. In this brief, two discrete and continuous versatile memristor models

Circuit Theory and Applications