banner

Filter by

Chaos-based hardware speech encryption scheme using modified tent map and bit permutation

This paper proposes a speech encryption scheme based on a generalized modified chaotic tent map and bit permutation and presents its hardware realization. The generalization scales the output range and increases the key space. The modification controls the bounds on the output range through a parameter such that chaotic output exists for almost all values of the parameter. The security and

Circuit Theory and Applications
Software and Communications

A novel 4-D hyperchaotic system with two quadratic nonlinearities and its adaptive synchronisation

This work announces an eleven-term novel 4-D hyperchaotic system with two quadratic nonlinearities. A qualitative analysis of the properties of the novel 4-D hyperchaotic system is presented. A special feature of our novel hyperchaotic system is that it has three equilibrium points of which two are unstable and one is locally asymptotically stable. The Lyapunov exponents of the novel hyperchaotic

Circuit Theory and Applications

Effective supervisory controller to extend optimal energy management in hybrid wind turbine under energy and reliability constraints

One of the major factors that can increase the efficiency of wind turbines (WTs) is the simultaneous control of the different parts in several operating area. The main problem associated with control design in wind generator is the presence of asymmetric in the dynamic model of the system, which makes a generic supervisory control scheme for the power management of WT complicated. Consequently

Circuit Theory and Applications

Hybrid rough-bijective soft set classification system

In today’s medical world, the patient’s data with symptoms and diseases are expanding rapidly, so that analysis of all factors with updated knowledge about symptoms and corresponding new treatment is merely not possible by medical experts. Hence, the essential for an intelligent system to reflect the different issues and recognize an appropriate model between the different parameters is evident

Circuit Theory and Applications

Radiographic images fractional edge detection based on genetic algorithm

Recently, fractional edge detection algorithms have gained focus of many researchers. Most of them concern on the fractional masks implementation without optimization of threshold levels of the algorithm for each image. One of the main problems of the edge detection techniques is the choice of optimal threshold for each image. In this paper, the genetic algorithm has been used to get the optimal

Circuit Theory and Applications

Modeling and analysis of fractional order DC-DC converter

Due to the non-idealities of commercial inductors, the demand for a better model that accurately describe their dynamic response is elevated. So, the fractional order models of Buck, Boost and Buck-Boost DC-DC converters are presented in this paper. The detailed analysis is made for the two most common modes of converter operation: Continuous Conduction Mode (CCM) and Discontinuous Conduction Mode

Circuit Theory and Applications

Effect of Different Approximation Techniques on Fractional-Order KHN Filter Design

Having an approximate realization of the fractance device is an essential part of fractional-order filter design and implementation. This encouraged researchers to introduce many approximation techniques of fractional-order elements. In this paper, the fractional-order KHN low-pass and high-pass filters are investigated based on four different approximation techniques: Continued Fraction Expansion

Circuit Theory and Applications

On the Analysis and Design of Fractional-Order Chebyshev Complex Filter

This paper introduces the concept of fractional-order complex Chebyshev filter. A fractional variation of Chebyshev differential equations is introduced based on Caputo fractional operator. The proposed equation is solved using fractional Taylor power series method. The condition for fractional polynomial solutions is obtained and the first four polynomials scaled using an appropriate scaling

Circuit Theory and Applications

Minimization of Spread of Time-Constants and Scaling Factors in Fractional-Order Differentiator and Integrator Realizations

The approximations of fractional-order differentiator/integrator transfer functions are currently performed using integer-order rational functions, which are in general implemented through appropriate multi-feedback topologies. The spreading in the values of time-constants and scaling factors, needed to implement these topologies, increases as the order of the differentiator/integrator and/or the

Circuit Theory and Applications

Memristor-CNTFET based ternary logic gates

Multilevel electronic systems offer the reduction of implementation’ complexity, power consumption, and area. Ternary system is a very promising system where more information is represented in the same number of digits compared to the binary systems. In this paper, ternary logic gates and some of their ternary circuit applications are presented using memristors and CNTFET inverter. This

Circuit Theory and Applications