banner

Ternary SRAM circuit designs with CNTFETs

Static random-access memory (SRAM) is a cornerstone in modern microprocessors architecture, as it has high power consumption, large area, and high complexity. Also, the stability of the data in the SRAM against the noise and the performance under the radian exposure are main concern issues. To overcome these limitations in the quest for higher information density by memory element, the ternary logic system has been investigated, showing promising potential compared with the conventional binary base. Moreover, carbon nanotube field effect transistor (CNTFET) is a new alternative device with

Artificial Intelligence
Energy and Water
Circuit Theory and Applications
Software and Communications
Agriculture and Crops
Mechanical Design

Guest Editorial: Fractional-Order Circuits and Systems: Theory, Design, and Applications

[No abstract available]

Artificial Intelligence
Circuit Theory and Applications
Mechanical Design

A Unified FPGA Realization for Fractional-Order Integrator and Differentiator

This paper proposes a generic FPGA realization of an IP core for fractional-order integration and differentiation based on the Grünwald–Letnikov approximation. All fractional-order dependent terms are approximated to simpler relations using curve fitting to enable an efficient hardware realization. Compared to previous works, the proposed design introduces enhancements in the fractional-order range covering both integration and differentiation. An error analysis between software and hardware results is presented for sine, triangle and sawtooth signals. The proposed generic design is realized

Healthcare
Circuit Theory and Applications
Software and Communications
Mechanical Design

Fractional Order Systems: An Overview of Mathematics, Design, and Applications for Engineers: Volume 1 in Emerging Methodologies and Applications in Modelling

Fractional Order Systems: An Overview of Mathematics, Design, and Applications for Engineers introduces applications from a design perspective, helping readers plan and design their own applications. The book includes the different techniques employed to design fractional-order systems/devices comprehensively and straightforwardly. Furthermore, mathematics is available in the literature on how to solve fractional-order calculus for system applications. This book introduces the mathematics that has been employed explicitly for fractional-order systems. It will prove an excellent material for

Artificial Intelligence
Circuit Theory and Applications
Mechanical Design

CNTFET-based Approximate Ternary Adder Design

Multiple-Valued Logic (MVL) offers better data representation allowing higher information processing within the same amount of digits. With a trade-off in accuracy, approximate computation is a method to improve the power, size, and speed of digital circuits. This paper presents the design of CNTFET-based ternary half adder, full adder, 2-trit carry ripple adder, and 4trit carry ripple adder with different accuracies. The proposed designs are implemented using HSPICE tool and simulated for power consumption, delay, and error analysis. The trade-off between the transistor count and the

Energy and Water
Circuit Theory and Applications
Software and Communications
Mechanical Design

Active and passive sensitivity analysis for the second-order active RC filter families using operational amplifier: a review

This work is a review article that sheds light on the active and passive sensitivities of the active RC filters based on opamp. This work provides a detailed analysis through different filters realization criteria and sensitivity summary tables and quantitative insight by discussing the most significant. However, some are almost forgotten, filters families in the literature over decades. A detailed mathematical analysis for the passive sensitivity to compare the filters’ realizations is presented. The concept of dealing between filter design theory and filter design circuit realization is

Artificial Intelligence
Circuit Theory and Applications
Mechanical Design

Analysis of plasmonic nanoparticles effects on the performance of perovskite solar cells through surface recombination and short-circuiting behaviors

Plasmonic photovoltaics integrate nanoparticles into the active layer to enhance power absorption. However a gap exists between simulated and experimental IV characteristics. Fabrication studies have attributed the issues to fabrication resolution, and recombination with no detailed step-by-step characterization. To address this issue, the paper presents a comprehensive optical and electrical study of a new plasmonic crescent nanoparticle (CNP). These particles serve as a near-field confinement source to enhance the efficiency of perovskite TiO2-MAPbI3-Spiro solar cells. The proposed design

Artificial Intelligence
Energy and Water
Circuit Theory and Applications
Mechanical Design

Capacitive Power Transfer Modeling of Charging Inner-body Devices

Wireless power transfer (WPT) is highly desirable for applications with battery restrictions, such as biomedical applications. For example, in the case of implantable devices, power is transmitted through the human body, which has dielectric characteristics that must be considered during the design of the WPT system. This paper examines capacitive power transfer through the human body and formulates the complete WPT system, including the human body model. The power delivered to the implantable device is also analyzed. Finally, the system efficiency is discussed under different body and load

Healthcare
Energy and Water
Circuit Theory and Applications
Software and Communications
Agriculture and Crops
Mechanical Design

Fractional-Order Design: Devices, Circuits, and Systems: Volume 3 in Emerging Methodologies and Applications in Modelling

Fractional-Order Design: Devices, Circuits, and Systems introduces applications from the design perspective so that the reader can learn about, and get ready to, design these applications. The book also includes the different techniques employed to comprehensively and straightforwardly design fractional-order systems/devices. Furthermore, a lot of mathematics is available in the literature for solving the fractional-order calculus for system application. However, a small portion is employed in the design of fractional-order systems. This book introduces the mathematics that has been employed

Artificial Intelligence
Circuit Theory and Applications
Mechanical Design

An Automated Lightweight UVM Tool

In this paper, an automated universal verification methodology (UVM) tool for rapid functional verification is presented. Now, UVM dominates the verification process but, it is very hard and too complicated to learn. This paper introduces a lightweight UVM tool which allows the user to rapidly verify complex RTL designs and different IPs. Also, it allows the user to perform the simulation for any design under test (DUT). The proposed tool generates the suitable UVM architecture to the DUT with the needed codes. Moreover, it provides the user with statistics about the number of the used classes

Circuit Theory and Applications
Software and Communications
Mechanical Design