banner

Modified Blowfish Algorithm Based on Improved Lorenz Attractor

Image security becomes important topic because of increasing image usage in communication besides assures information security which is unseen in these images such as military and medical images. Blowfish is a superb symmetric cryptography that ensures a high degree of resistance to attacks. The proposed system modifies Blowfish algorithm by substituting the function in blowfish round with light weight function to save memory and resources of the platforms and Using 3-D chaotic system (Improved Lorenz) that work as a key timetable for creating Blowfish sub keys in order to increasing

Artificial Intelligence
Healthcare
Circuit Theory and Applications
Software and Communications
Mechanical Design

A power-aware task scheduler for energy harvesting-based wearable biomedical systems using snake optimizer

There is an increasing interest in energy harvesting for wearable biomedical devices. This requires power conservation and management to ensure long-term and steady operation. Hence, task scheduling algorithms will be used throughout this work to provide a reliable solution to minimize energy consumption while considering the system operation constraints. This study proposes a novel power-aware task scheduler to manage system operations. For example, we used the scheduler to handle system operations, including heart rate and temperature sensors. Two optimization techniques have been used to

Artificial Intelligence
Healthcare
Energy and Water
Circuit Theory and Applications
Software and Communications
Innovation, Entrepreneurship and Competitiveness

Review of activated carbon adsorbent material for textile dyes removal: Preparation, and modelling

Water contamination with colours and heavy metals from textile effluents has harmed the ecology and food chain, with mutagenic and carcinogenic effects on human health. As a result, removing these harmful chemicals is critical for the environment and human health. Various standard physicochemical and biological treatment technologies are used; however, there are still some difficulties. Adsorption is described as a highly successful technology for removing contaminants from textile-effluents wastewater compared to other methods. Several adsorbent materials, including nanomaterials, natural

Artificial Intelligence
Healthcare
Energy and Water
Circuit Theory and Applications

Preparation and Characterization of nZVI, Bimetallic Fe 0-Cu, and Fava Bean Activated Carbon-Supported Bimetallic AC-F e 0-Cu for Anionic Methyl Orange Dye Removal

Nano zero-valent iron (nZVI), bimetallic Nano zero-valent iron-copper (Fe 0- Cu), and fava bean activated carbon-supported with bimetallic Nano zero-valent iron-copper (AC-F e 0-Cu) were prepared and characterized by DLS, FT-IR, XRD, and SEM. The influence of the synthesized adsorbents on the adsorption and removal of soluble anionic methyl orange (M.O) dye was investigated using UV-V spectroscopy. The influence of numerous operational parameters was studied at varied pH (3–9), time intervals (15–180 min), and dye concentrations (25–1000 ppm) to establish the best removal conditions. The
Artificial Intelligence
Energy and Water
Circuit Theory and Applications

An Efficient DMO Task Scheduling Technique for Wearable Biomedical Devices

The popularity of wearable devices has grown as they improve the quality of life in many applications. In particular, for medical devices, energy harvesters are the dominating source of energy for wearable devices. However, their power budget is limited. Thus, power-saving techniques are essential components in the whole technology stack of those devices. That is, choosing the optimal schedule for different tasks running on the wearable device can help to reduce energy consumption. This paper presents a sensor task scheduling technique for optimizing energy consumption for energy harvesting

Artificial Intelligence
Healthcare
Energy and Water
Circuit Theory and Applications
Software and Communications

Effect of reaction conditions on gamma radiation-induced graft polymerization of α-methyl styrene onto polyethersulfone films: a kinetic study

In this work, gamma irradiation from a cobalt 60Co source was used to graft Copolymerize α-methyl styrene (AMS) onto Polyethersulfone (PES) films. Grafting reaction was performed at ambient temperature by simultaneous method applying different dose rates for a total absorbed dose of 30 kGy. The effects of reaction conditions including, dose rate, monomer concentration and absorbed dose on the grafting yield (DOG) were studied. Results showed that the grafting conditions influence considerably DOG. In addition, the depth understanding of the graft copolymerization reaction kinetics under

Artificial Intelligence
Circuit Theory and Applications
Agriculture and Crops

Improvement of piezoresistive pressure sensor using zig-zag shaped and PVDF material

Due to a wide range of applications in the biomedical industry, the need for flexible and wearable sensors is growing every day. A pressure sensor generates a signal based on the applied pressure. Sensors have become an integral component of our daily lives, from personal gadgets to industrial machinery. The identification of the low signal from the body necessitates the use of particularly sensitive sensors. The development of a pressure sensor that can transform the maximum input signal into an electrical output is critical. In this paper, zig-zag piezoresistors on a square diaphragm were

Artificial Intelligence
Healthcare
Circuit Theory and Applications
Software and Communications
Mechanical Design
Innovation, Entrepreneurship and Competitiveness

Sustainable Energy-Aware Task Scheduling for Wearable Medical Device Using Flower Pollination Algorithm

Power management and energy conservation are crucial for medical wearable devices that rely on energy harvesting. These devices operate under strict power budgets and require prolonged and stable operation. To achieve this, Energy-aware task scheduling is proposed as a solution to minimize energy consumption while ensuring the continued operational capabilities of the device. our paper presents a task scheduling method using the Flower Pollination Algorithm (FPA). The proposed task scheduling focuses on managing the activity of key components such as the heart rate sensor, temperature sensor

Artificial Intelligence
Healthcare
Energy and Water
Circuit Theory and Applications
Software and Communications
Innovation, Entrepreneurship and Competitiveness

Adsorption as an Emerging Technology and Its New Advances of Eco-Friendly Characteristics: Isotherm, Kinetic, and Thermodynamic Analysis

Water contamination with paints causes a colour agent to the water that negatively affects the environment, organisms, and humans. Different physicochemical processes are applied for wastewater treatment; however, they have many drawbacks such as high cost, generating toxic waste, and non-effective at low concentrations. Adsorption is considered a promising technique for pollutant removal from polluted wastewater. Commercial activated carbon, nano-materials, and natural biological materials are used as adsorbents in adsorption. This chapter focuses on discussing the adsorption process, the

Artificial Intelligence
Healthcare
Energy and Water
Circuit Theory and Applications
Mechanical Design

A Lightweight Image Encryption Scheme Using DNA Coding and Chaos

Protecting transmitted multimedia data such as images is a significant concern. This work proposes an encryption algorithm for greyscale images using a Pseudo-Random Number Generator (PRNG), DNA coding, and pixel sum. The proposed approach is implemented on a Genesys 2 FPGA using minimal hardware resources and can operate at a maximum frequency of 110.8 MHz. In addition, several performance evaluation tests are conducted for multiple images, including statistical analysis of the encrypted image, keyspace analysis, and differential attack analysis. The system is compared to recent works with

Artificial Intelligence
Circuit Theory and Applications
Software and Communications