Breadcrumb
Modeling of light absorption in self-assembled truncated conical quantum dot structures
Quantum Dots have shown a significant potential as a top candidate for infrared photodetection at higher temperatures. In the presented work, a theoretical model for estimating the coefficient of optical absorption of self-assembled truncated conical quantum dot is developed. This model considers both bound-to-continuum and bound-to-bound absorption mechanisms that increase the accuracy of the absorption coefficient estimation. The developed model is based on estimating the bound states by diagonalizing the Hamiltonian matrix, where the density of states is computed using the Non-Equilibrium
Guest Editorial: Fractional-Order Circuits and Systems: Theory, Design, and Applications
[No abstract available]
Quasi-Monte Carlo Technique With the Halton Sequence Applied To Mushroomwaveguide Photodetectors (WGPDs)
Monte Carlo (MC) simulation is a widely adopted computational method that relies on random sampling, but it is susceptible to exhibiting patterns and biases due to the use of pseudo-random numbers. In contrast, Quasi-Monte Carlo (QMC) techniques employ low discrepancy sequences, resulting in more evenly distributed random numbers and the potential for more accurate and reliable simulation outcomes. Mushroom-Waveguide Photodetectors (WGPDs) are integrated to a wide range of applications, and their performance is critically dependent on precise dimensional parameters. In this research, we
Design and control of soft biomimetic pangasius fish robot using fin ray effect and reinforcement learning
Soft robots provide a pathway to accurately mimic biological creatures and be integrated into their environment with minimal invasion or disruption to their ecosystem. These robots made from soft deforming materials possess structural properties and behaviors similar to the bodies and organs of living creatures. However, they are difficult to develop in terms of integrated actuation and sensing, accurate modeling, and precise control. This article presents a soft-rigid hybrid robotic fish inspired by the Pangasius fish. The robot employs a flexible fin ray tail structure driven by a servo
Battery Modeling with Mittag-Leffler Function
In various areas of life, rechargeable lithium-ion batteries are the technology of choice. Equivalent circuit models are utilized extensively in characterizing and modeling energy storage systems. In real-time applications, several generic-based battery models are created to simulate the battery's charging and discharging behavior more accurately. In this work, we present two generic battery models based on Mittag-Leffler function using a generic Standard battery model as a reference. These models are intended to fit the continuous discharging cycles of lithium-ion, Nickel-cadmium, and Nickel
High gain antipodal meander line antenna for point-to-point WLAN/WiMAX applications
This paper introduces a planar antipodal meander line antenna fabricated using RO3003 substrate. The proposed antenna is designed to radiate in the end-fire direction, achieving a maximum measured gain of 10.43 dBi within its working bandwidth, which ranges from 2.24 GHz to 2.7 GHz, covering long-range WLAN/WiMAX applications. A systematic procedure is adopted in the design process to prove its tunability to cover other application requirements in terms of gain and bandwidth. The proposed design steps show that the bandwidth and the gain can independently be controlled by adjusting specific
High Gain Meander Line Antenna for 2.4 GHz Bluetooth Applications
In this paper, a highly directive meander line antenna is proposed to be utilized in the unlicensed Bluetooth band. The main goal of the proposed structure is to achieve low profile, and high gain in the Bluetooth band. Moreover, the antenna should be of low cost to be suitable for commercial use. The proposed structure is simulated using HFSS and CST to verify the obtained results. The maximum calculated gain of the antenna is 9.95 dBi (9.79 dBi) along the end-fire direction as simulated by HFSS (CST). The antenna demonstrated high radiation efficiency which is around 96% over its working
Fractional-order and memristive nonlinear systems: Advances and applications
[No abstract available]
Hardware Accelerator of Fractional-Order Operator Based on Phase Optimized Filters With Applications
Hardware accelerators outperform CPUs in terms of performance by parallelizing the algorithm architecture and using the device’s programmable resources. FPGA is a type of hardware accelerator that excels not only in performance but also in energy efficiency. So, it provides a suitable platform for implementing complicated fractional-order systems. This paper proposes a novel phase-based optimization method to implement fractional operators using FIR and IIR filters. We also compare five fractional operator implementation methods on FPGA regarding resource utilization, execution time, power
Applications of continuous-time fractional order chaotic systems
The study of nonlinear systems and chaos is of great importance to science and engineering mainly because real systems are inherently nonlinear and linearization is only valid near the operating point. The interest in chaos was increased when Lorenz accidentally discovered the sensitivity to initial condition during his simulation work on weather prediction. When a nonlinear system is exhibiting deterministic chaos, it is very difficult to predict its response under external disturbances. This behavior is a double-edged weapon. From a control and synchronization point of view, this proposes a
Pagination
- Previous page ‹‹
- Page 9
- Next page ››